company logo


Методы определения оксида азота

Описанные в литературе методы определения NO можно условно разделить на прямые (таблица 2) и косвенные (таблица 3). В число первых входят те, с помощью которых осуществляется непосредственная регистрация NO, либо его комплексов. Прежде всего, это метод электронного парамагнитного резонанса (ЭПР) как средство изучения молекул с неспаренным электроном. Предложено использовать в качестве индикаторов NO регистрируемые методом ЭПР нитрозильные железосодержащие комплексы, устойчивые в биологически активных средах [1].

В живой ткани SH-содержащие белки, пептиды и аминокислоты образуют такие парамагнитные аддукты общего состава Fe(NO)2(SR)2, спектры ЭПР которых являются ассиметричными вариацией g-фактора от 2.01 до 2.05. однако из-за большого разнообразия естественных акцепторов NO и вариабельности их содержания, количественное определение этого радикала таким образом вряд ли возможно. В то же время гемопротеиды (гемоглобин, миоглобин, цитохром а3 и др.) образуют нитрозильные парамагнитные комплексы, имеющие широкий спектр ЭПР [1].

С разрешенной сверхтонкой структурой (СТС) в области значений g-фактора меньше 2. Анализ полученных спектров ЭПР свидетельствует о том, что структура указанных комплексов имеет ромбическую симметрию [13].

Таблица 3. прямые методы регистрации оксида азота[1].

Инструментальный метод

Соединение-индикатор/реакция-индикатор

Чувствительность

ЭПР

Fe-(NO)2-(SR)2

ЭПР

Hb-Fe(II)-NO

5 мкМ

ЭПР

(ДТК)2-Fe(II)-NO

1 мкМ

ЭПР, L-линия

Фьюзинит-NO

1 мкМ

Хемилюминесценция

NO + O3 = hν + NOx

20 нМ

Амперовольтметрия

NO + e = NOx

10 нМ

Более перспективным представляется метод с использованием карбоксигемоглобина в качестве экзогенной спиновой ловушки оксида азота. На состояние Hb-Fe(II)-CO не оказывает влияния степень оксигенации среды, а поскольку прочность связывания NO с гемоглобином на три порядка больше, чем прочность связывания СО, то можно ожидать практически количественного образования нитрозил-гемоглобина. Следует, однако, отметить, что гемоглобин или его производные имеют ряд особенностей, ограничивающих применение их в качестве естественной или экзогенной спиновой ловушки. Проникновение крупных молекул в клетки к месту синтеза оксида азота крайне затруднено, поэтому включаться в комплекс и становиться ЭПР-видимой будет лишь часть оксида азота, не метаболизированная в период диффузии. Кроме того, недостаточно определены пути и скорости дальнейших превращений Hb-Fe(II)-NO в живой клетке [1].

При прямом определении NO методом ЭПР-спектрометрии перспективным представляется использование в качестве спиновой ловушки производных дитиокарбаминовой кислоты (ДТК). В организме они образуют ЭПР-видимые комплексы состава (ДТК)2-Fe-NO, включающие в себя «свободное» железо [14]. Эти комплексообразователи позволяют изучать образование оксида азота в тканях животных, в гомогенах, в культуре клеток и биологических жидкостях. Важно, что при оптимальных нетоксичных концентрациях ДТК их высокая скорость взаимодействия с NO существенно снижает вероятность реакции оксида азота с другими биомолекулами, в том числе с радикалами, и тем самым ограничивает влияние этих реакций на результаты ЭПР-спектрометрии [1].

Предложен оригинальный метод ЭПР-дозиметрии NO, в котором применена спиновая макроловушка - фьюзиниты. Это частицы размером 10 мкм, выделяемые из угля. Они обладают способность поглощать оксид азота с изменением характеристик собственного ЭПР-спектра. Не подвергаясь метаболизму, они не оказывают токсического действия на клетки, и после поглощения путем фагоцитоза могут быть использованы в качестве аналитического средства, специфического к оксиду азота [1].

Перейти на страницу:
1 2 3


Новое на сайте

Другие материалы


Copyright © 2013 - Все права защищены - www.timebiology.ru