company logo


Общая характеристика явления биоконцентрирования и его элементарная модель

Явление биоконцентрирования, то есть накопления химических веществ в тканях растений и животных в процессе их нормальной жизнедеятельности, относится к важнейшим биологическим факторам, определяющим динамику перемещения химических элементов на нашей планете. Для характеристики эффекта используют коэффициент биоконцентирования Bcf = Cb/Cw, где Cb и Cw - концентрации вещества в живом веществе и в воде соответственно. Для большинства тяжелых металлов, обнаруженных в растениях, величина Bcf находится в пределах 102-105 если концентрацию измерять в граммах металла, содержащихся в одном грамме воды или сухого растения соответственно [1, 2]. Широкое применение эффект биоконцентрирования нашел при анализе качества природных вод, поскольку анализировать концентрированную пробу (часть растения) проще, чем окружающую его воду. Помимо того, что растение представляет собой естественный сборник экотоксикантов и избавляет исследователя от трудоемкой процедуры предварительного концентрирования пробы, содержание анализируемого вещества в растении или животном характеризует не просто уровень загрязнения воды, но показывает степень биодоступности данного вещества, в какой бы химической форме оно ни находилось. Это позволяет оценить медицинские последствия употребления воды из данного водоема человеком.

Основными преимуществами метода биоконцентрирования являются простота основных процедур и доступность применяемого аналитического оборудования. От исполнителя требуется только собрать и взвесить растительный материал, а затем перевести экотоксикант в определяемую форму. Для тяжелых металлов чаще всего используют сжигание в токе воздуха при 600-800оС с последующим растворением в соляной кислоте, для органических соединений - экстракцию н-гексаном или диэтиловым эфиром [2, 3].

Серьезным недостатком этого метода является то, что он не информирует нас о вариациях концентрации экотоксиканта во времени. Мы всегда получаем средний результат, отвечающий накоплению экотоксиканта за достаточно длительный период. Мало того, скорость накопления вещества зависит и от фазы роста растения и от внешних условий и от состояния растения в целом. Теория эффекта биоконцентрирования разработана слабо, единой методологии его применения не существует и не всегда есть уверенность в достоверности табличных коэффициентов биоконцентрирования. Интересно отметить, что в уже цитировавшейся монографии [2] нет ни одного указания на связь величины Bcf с биометрическими показателями растения и условиями его произрастания. Зато приведенный там же разброс коэффициента для одной и той же пары «экотоксикант-растение» достигает трех порядков.

Согласно современным взглядам, химические механизмы биоконцентрирования тяжелых металлов одинаковы для большинства таких металлов (исключение составляет ртуть, для которой известен механизм концентрирования в виде Hg(CH3)2)[3]. Для таких же металлов как Fe, Cu, Pb, Ni и др. характерно закрепление на тиольных, карбоксильных и гидроксильных концевых группах биополимеров. Следовательно, можно считать, что скорость накопления любого из рассмотренных металлов пропорциональна его концентрации в воде, питающей растение. Рассмотрим одноблочную динамическую модель биоконцентрирования, согласно которой растение представляет собой некий резервуар, в который поступает питательный водный раствор со скоростью Vw и концентрацией интересующего нас металла CМе. Следует также учесть, что общая масса растения возрастает со временем со скоростью Vb (растение растет). Вкладом массы концентрируемого металла в биомассу растения пренебрегаем. Вся поступающая вода испаряется с поверхности зеленых частей растения, а ионы металла остаются в тканях. Тогда для скорости поступления металла в растение и скорости его роста можно записать систему из двух дифференциальных уравнений:

Перейти на страницу:
1 2 3


Новое на сайте

Другие материалы


Copyright © 2013 - Все права защищены - www.timebiology.ru