company logo


Области применения нейронных сетей

биологический нейронный импульс мозг

Нейросетевая классификация Отметим, что задачи классификации (типа распознавания букв) очень плохо алгоритмизуются. Если в случае распознавания букв верный ответ очевиден для нас заранее, то в более сложных практических задачах обученная нейронная сеть выступает как эксперт, обладающий большим опытом и способный дать ответ на трудный вопрос.

Примером такой задачи служит медицинская диагностика, где нейронная сеть может учитывать большое количество числовых параметров (энцефалограмма, давление, вес и т.д.). Конечно, "мнение" нейронной сети в этом случае нельзя считать окончательным.

Классификация предприятий по степени их перспективности - это уже привычный способ использования нейронных сетей в практике западных компаний. При этом нейронная сеть также использует множество экономических показателей, сложным образом связанных между собой. Нейросетевой подход особенно эффективен в задачах экспертной оценки по той причине, что он сочетает в себе способность компьютера к обработке чисел и способность мозга к обобщению и распознаванию. Говорят, что у хорошего врача способность к распознаванию в своей области столь велика, что он может провести приблизительную диагностику уже по внешнему виду пациента. Можно согласиться также, что опытный трейдер чувствует направление движения рынка по виду графика. Однако в первом случае все факторы наглядны, то есть характеристики пациента мгновенно воспринимаются мозгом как "бледное лицо", "блеск в глазах" и т.д. Во втором же случае учитывается только один фактор, показанный на графике - курс за определенный период времени. Нейронная сеть позволяет обрабатывать огромное количество факторов (до нескольких тысяч), независимо от их наглядности - это универсальный "хороший врач", который может поставить свой диагноз в любой области. Кластеризация с помощью нейронных сетей и поиск зависимостей

Помимо задач классификации, нейронные сети широко используются для поиска зависимостей в данных и кластеризации. Например, нейронная сеть на основе методики МГУА (метод группового учета аргументов) позволяет на основе обучающей выборки построить зависимость одного параметра от других в виде полинома. Такая нейронная сеть может не только мгновенно выучить таблицу умножения, но и найти сложные скрытые зависимости в данных (например, финансовых), которые не обнаруживаются стандартными статистическими методами.

Кластеризация - это разбиение набора примеров на несколько компактных областей (кластеров), причем число кластеров заранее неизвестно. Кластеризация позволяет представить неоднородные данные в более наглядном виде и использовать далее для исследования каждого кластера различные методы. Например, таким образом можно быстро выявить фальсифицированные страховые случаи или недобросовестные предприятия. Применение нейронных сетей в задачах прогнозирования

Задачи прогнозирования особенно важны для практики, в частности, для финансовых приложений, поэтому поясним способы применения нейронных сетей в этой области более подробно. Рассмотрим практическую задачу, ответ в которой неочевиден - задачу прогнозирования курса акций на 1 день вперед. Пусть у нас имеется база данных, содержащая значения курса за последние 300 дней. Простейший вариант в данном случае - попытаться построить прогноз завтрашней цены на основе курсов за последние несколько дней. Понятно, что прогнозирующая нейронная сеть должна иметь всего один выход и столько входов, сколько предыдущих значений мы хотим использовать для прогноза - например, 4 последних значения. Составить обучающий пример очень просто - входными значениями нейронной сети будут курсы за 4 последовательных дня, а желаемым выходом нейронной сети - известный нам курс в следующий день за этими четырьмя. Если нейронная сеть совместима с какой-либо системой обработки электронных таблиц (например, Excel), то подготовка обучающей выборки состоит из следующих операций: 1. Скопировать столбец данных значений котировок в 4 соседних столбца. 2. Сдвинуть второй столбец на 1 ячейку вверх, третий столбец - на 2 ячейки вверх и т.д.

Перейти на страницу:
1 2


Новое на сайте

Другие материалы


Copyright © 2013 - Все права защищены - www.timebiology.ru