company logo


Близость к идеальным значениям по комплексу признаков

Для прогноза близости потомства от скрещивания выбранных родителей к заданному идеалу Дж. Графиус разработал векторный метод. Под идеалом понимается модель сорта - воображаемый сорт, имеющий заданные величины признаков, оптимальные для конкретных условий среды.

Д. Педерсон упростил этот метод и предложил подобрать родительские формы, дополнительно задавая селекционным признакам различные веса - допустимые отклонения от идеальных значений. Суть метода Педерсона заключается в следующем. У каждого из т

потенциальных родительских сортов учтено Nколичественных признаков. Номер признака обозначен у.

Каждому признаку селекционер - эксперт задает идеальное значение Ij

,а также отклонение от идеала Dj

. Цель скрещивания - получение гибридной популяции со средним значением каждого признака в интервале I

j

±

Dj[1].

Основная проблема прогнозирования - сложная генетическая связь величин признаков родителей и популяционных средних в потомстве их скрещиваний. Поэтому в методе Педерсона предлагается, что среднее значение каждого признака в позднем поколении скрещивания равно средневзвешенным значениям этого признака у родителей. Таким образом, популяционная средняя по j

-му признаку (j) потомства равна (3):

(3)

где х

ij- значение j

-го признака у i

-го родителя; П

i

- доля i

-го родителя в геноме популяции потомства. Обычно селекционер располагает большим набором сортов и форм, изучаемых по хозяйственным признакам в конкурсном и предварительном сортоиспытании, производстве или в коллекционном питомнике. Модификация метода оценки близости к идеалу, предложенную С. П. Мартыновым [4]. Мерой отклонения ожидаемого потомства от модели идеального сорта в модификации является уравнение:

(4)

где Ij,jзначение j

-

го признака у идеала и ожидаемого потомства; аj -весовoй коэффициент

j

-

го признака; - стандартное отклонение

j

-го признака в наборе сортов.

В этом случае вектор идеала представляет собой совокупность оптимальных (наилучших) значений селекционных признаков, полученных при испытании сортов в различных условиях.

В методе С. П. Мартынова признаки могут быть разработаны на несколько групп с одинаковыми весами для признаков в одной группе. Их подсчитывают по формуле (5):

а = ркN / пк;к = 1, ,G,(5)

где рк - заданный вклад k -й группы признаков в некоторую меру сходства ожидаемого потомства и заданного идеала; N - общее число признаков; пк - число признаков в k-й группе; G - число групп.

Общим недостатком методов, оценивающих близость к идеальному сорту средних значений признаков ожидаемого потомства, является отсутствие учета генетического разнообразия популяции потомства. Один вариант скрещивания может давать большую близость средних к идеалу, но иметь низкое генетическое разнообразие популяции потомства по изучаемым признакам, а второй - дальше от идеала по средним, но с гораздо большей генотипической изменчивостью. Во второй популяции потомства больше вероятность отобрать формы, близкие к идеальному сорту. Поэтому генетическое разнообразие потомства также оценивать и учитывать при подборе родительских форм [1].


Новое на сайте

Другие материалы


Copyright © 2013 - Все права защищены - www.timebiology.ru