Для прогноза близости потомства от скрещивания выбранных родителей к заданному идеалу Дж. Графиус разработал векторный метод. Под идеалом понимается модель сорта - воображаемый сорт, имеющий заданные величины признаков, оптимальные для конкретных условий среды.
Д. Педерсон упростил этот метод и предложил подобрать родительские формы, дополнительно задавая селекционным признакам различные веса - допустимые отклонения от идеальных значений. Суть метода Педерсона заключается в следующем. У каждого из т
потенциальных родительских сортов учтено Nколичественных признаков. Номер признака обозначен у.
Каждому признаку селекционер - эксперт задает идеальное значение Ij
,а также отклонение от идеала Dj
. Цель скрещивания - получение гибридной популяции со средним значением каждого признака в интервале I
j
±
Dj[1].
Основная проблема прогнозирования - сложная генетическая связь величин признаков родителей и популяционных средних в потомстве их скрещиваний. Поэтому в методе Педерсона предлагается, что среднее значение каждого признака в позднем поколении скрещивания равно средневзвешенным значениям этого признака у родителей. Таким образом, популяционная средняя по j
-му признаку (j) потомства равна (3):
(3)
где х
ij- значение j
-го признака у i
-го родителя; П
i
- доля i
-го родителя в геноме популяции потомства. Обычно селекционер располагает большим набором сортов и форм, изучаемых по хозяйственным признакам в конкурсном и предварительном сортоиспытании, производстве или в коллекционном питомнике. Модификация метода оценки близости к идеалу, предложенную С. П. Мартыновым [4]. Мерой отклонения ожидаемого потомства от модели идеального сорта в модификации является уравнение:
(4)
где Ij,jзначение j
-
го признака у идеала и ожидаемого потомства; аj -весовoй коэффициент
j
-
го признака; - стандартное отклонение
j
-го признака в наборе сортов.
В этом случае вектор идеала представляет собой совокупность оптимальных (наилучших) значений селекционных признаков, полученных при испытании сортов в различных условиях.
В методе С. П. Мартынова признаки могут быть разработаны на несколько групп с одинаковыми весами для признаков в одной группе. Их подсчитывают по формуле (5):
а = ркN / пк;к = 1, ,G,(5)
где рк - заданный вклад k -й группы признаков в некоторую меру сходства ожидаемого потомства и заданного идеала; N - общее число признаков; пк - число признаков в k-й группе; G - число групп.
Общим недостатком методов, оценивающих близость к идеальному сорту средних значений признаков ожидаемого потомства, является отсутствие учета генетического разнообразия популяции потомства. Один вариант скрещивания может давать большую близость средних к идеалу, но иметь низкое генетическое разнообразие популяции потомства по изучаемым признакам, а второй - дальше от идеала по средним, но с гораздо большей генотипической изменчивостью. Во второй популяции потомства больше вероятность отобрать формы, близкие к идеальному сорту. Поэтому генетическое разнообразие потомства также оценивать и учитывать при подборе родительских форм [1].