Благодаря целеустремлённой работе ученых естествоиспытателей наука была поставлена на такую степень развития, что, казалось бы, ничто не способно устоять перед строгой определённостью её законов. Так, Пьер Лаплас, живший в XIX в., выразил взгляд на Вселенную, как на полностью детерминированный объект: «ничто не будет неопределенным, и будущее, как прошлое, будет представлено перед глазами». К примеру, если мы знаем точное положение планет и Солнца в данный момент, то по законам притяжения можем точно вычислить, в каком состоянии будет находиться Солнечная система в любой другой момент времени. Но Лаплас хотел увидеть в детерминизме законов Вселенной ещё больше: он утверждал, что существуют аналогичные законы для всего, в том числе и для человека. Эта доктрина детерминизма была в корне разрушена квантовой теорией.
Сравним, чем отличается классическая механика от квантовой. Пусть имеется система частиц. В классической механике состояние системы в каждый момент времени определяется значением координат и импульсов всех частиц. Все другие физические параметры, как-то: энергия, температура, масса и т.п., могут быть определены из координат и импульсов частиц системы. Детерминизм классической механики заключается в том, что «будущее состояние системы полностью и единственным образом определены, если задано её начальное состояние».
Несомненно, в любом эксперименте измерения могут иметь некоторую неточность, неопределённость, и, в зависимости от рассматриваемой физической системы её будущее может оказаться либо чувствительным, либо нечувствительным к этой неопределённости. «Но в принципе (выделено нами - В.Р.) не существует какого-либо предела на точность, которой мы не могли бы достичь, - утверждает Сэм Трейман. - Поэтому в принципе,… нет препятствий для предугадывания будущего развития».
В квантовой механике также существует понятие «состояние системы». Как и в классической механике, система, согласно законам, «…развивается в такие состояния, которые полностью определены, если задано начальное состояние в некоторый начальный момент». Поэтому и здесь настоящее определяет будущее. Но «квантовые состояния не точно задают координаты и импульсы частиц; они определяют только вероятность (выделено нами - В.Р.)». Случайность в квантовой механике, - считает В.П Демуцкий, - это один из её постулатов.
Неизбежность вероятностного описания физической системы в квантовой механике поясняет Иоганн фон Нейман: «… никакое повторение последовательных измерений не может привнести причинный порядок…, ибо атомные явления лежат на краю физического мира, где любое измерение вносит изменение того же порядка, что и сам измеряемый объект, так что последний изменяется существенным образом, в основном из-за соотношений неопределённости».
На квантовом уровне определяющее значение носит «размытость» сопряженных характеристик, выраженная принципом неопределённости Гейзенберга: точность измерения координат и импульсов системы не может быть выше постоянной Планка, минимального кванта действия.
Согласно этому положению никакой эксперимент не может привести к одновременно точному измерению координат и импульса частицы. Эта неопределённость связана не с несовершенством измерительной системы, а с объективными свойствами микромира. Если мы определяем точно координату частицы, то значение её импульса «размывается» и становится тем более неопределённым, чем точнее определяется координата. Поэтому в квантовой механике исчезает классическое понимание траектории частицы. «В квантовой физике частицы двигаются по загадочным траекториям, простирающимся вдоль волноподобных путей. Одиночный электрон может быть везде в пределах волнового образца». К примеру, электрон может оставить фотографию своей траектории, но при этом может не иметь строгой траектории. В связи с рассмотрением траекторий атомных объектов удивительным представляется понимание траектории, предложенное Фейнманом. Согласно его модели, «вероятность перемещения частицы из точки А в точку В равна сумме вероятностей её движения по всем возможным траекториям, соединяющим эти точки». Следовательно, квантовая теория разрешает частице находиться на любой траектории, соединяющей две точки, а поэтому невозможно точно сказать, где окажется частица в определенный момент.