В 1926 г. А. Стертевант ввел в употребление понятие инверсии. В генетических исследованиях оно имеет большое значение. Он обнаружил это явление при изучении кроссинговера у самок плодовой мушки дрозофилы. При этом А. Стертевант обнаружил, что срединный участок одной из хромосом третьей пары перевернут на 180°, т.е. поставлен в обратном направлении. Вот этот переворот участка хромосомы и стали называть инверсией. Инверсии бывают простые (одиночные) и сложные. Причем сложные инверсии ведут к весьма значительным перестановкам блоков генов. В 1928 г. советский биолог К. Кольцов намного опережая открытие Д. Уотсона и Ф. Крика, в ясной форме высказал предположение о матричном синтезе, т.е. о том, что в настоящее время понимают под механизмом репликации и транскрипции. В 1950-1953 гг. Э. Чаргафф с сотрудниками опубликовал сенсационную серию работ, по изучению химической структуры нуклеиновых кислот. Они обследовали огромное количество разных организмов, брали образцы из различных органов и тканей. Проведенные исследования показали, что в состав ДНК, выделенной из ядер клеток человека, входят 30% аденина, 20% гуанина, 20% цитозина, 30% тимина. В то же время у бактерий например Sarcina lutea, эти цифры значительно отличаются и составляют соответственно 13%, 37%, 37%, и 13%. Эти и другие наблюдения позволили сделать вывод, что в состав LНК разных организмов входит неодинаковое количество азотистых оснований. Но для одного и того же организма соотношение между нуклеотидами сохраняется постоянным, из каких бы клеток ни выделяли ДНК. Это значит, что во всех клетках, например, человека, ядерная ДНК будет содержать 30% аденина. И какой бы штамм бактерий Sarcina lutea ни был взят, в какие сроки и в каких бы то но было условиях ни проводились эксперименты, содержание в них аденина будет всегда равным 13%, тимина - 13% и т.д.
Итак, общее количество адениновых остатков в каждой молекуле ДНК равно количеству тиминовых остатков, а количество гуаниновых единиц - количеству цитозиновых. В дальнейшем этим открытием, получившим название «правило Чаргаффа» воспользовались Дж. Уотсон и Ф. Крик при построении моделей молекулы ДНК. На основании проведенных исследований было высказано предположение, что такая закономерность обусловлена наличием генетического кода, заключенного в структуре ДНК.
В этот же период было сделано еще одно уникальное открытие, указавшее на важную роль нуклеиновых кислот в передаче наследственной информации. Брали клетки совершенно различных, удаленных друг от друга органов и тканей. Исследования показали, что ядро любой клетки содержит примерно 6*10 мг ДНК. Только в яйцеклетках и сперматозоидах содержание ДНК было в два раза меньше, чем в клетках остальных тканей. Такое открытие вызвало два предположения. Во-первых, оно говорило об универсальных свойствах ДНК в пределах одного организма, о том, что в отношении хранения и передачи наследственной информации, заключенной в ядре клетки, все клетки организма равны, независимо от того, откуда они были взяты. Во-вторых, в любом организме имеется два типа клеток: соматические клетки - клетки тела организма (в переводе с греч. «сома» - тело) и половые клетки - клетки, связанные с размножением организмов. Между соматическими и половыми клетками существует отличие, которое проявляется в диплоидном и гаплоидном наборе хромосом. Диплоидный - это парный набор хромосом, гаплоидный - одинарный. Именно поэтому в половых клетках находится в два раза меньше нуклеиновых кислот, чем в соматических. Таким образом, вроде бы несложные количественные исследования нуклеиновых кислот дали важную по содержанию информацию. В 1950 г. Л. Полинг показал, что полипептидные цепи имеют α - спиральную конфигурацию, на основании чего он высказал предположение, что и молекула ДНК, по-видимому, имеет спиральную структуру, закрепленную водородными связями. Это послужило еще одним косвенным подтверждением существовавшего предположения о винтообразной структуре ДНК. Было показано, что возможно существование нескольких устойчивых различных конфигураций последовательности аминокислотных остатков в полипептидной цепи, одной из которых является α - спираль. Конфигурация α - спираль является одной из наиболее распространенных структур пептидной цепи. Именно такая структура дает возможность образования водородных связей между аминокислотами, находящимися рядом на смежных витках цепи. Поэтому естественно было предположить, что аналогичный механизм свойственен и для нуклеиновых кислот, так как по протяженности и числу составных элементов - в данном случае мононуклеотидов - они вполне соответствовали полипептидным цепям. В 1953 г. Д. Уотсон и Ф. Крик обосновали существование двойной спирали ДНК и впервые предложили адекватную модель молекулы ДНК, которая объяснила все факты, связанные с функционированием нуклеиновых кислот. Она показала, каким образом молекула передает информацию и воспроизводит сама себя. По сути дела, был открыт способ записи и воспроизведения генетической информации на молекулярном уровне. Д. Уотсон и Ф. Крик сами не проводили рентгеноструктурных исследований нуклеиновых кислот, но воспользовались данными М. Уилкинса и Р. Френклин и работами Э. Чаргаффа. Основным компонентом хромосом является ДНК. Д. Уотсон и Ф. Крик выделили два основных структурных свойства ДНК: ее двуспиральность и комплементарность, иначе говоря, соответствие друг другу цепей ДНК. От этих двух свойств зависит репликация генетического материала, т.е. возможность создания себе подобной структуры ДНК. В процессе репликации двойная спираль ДНК раскручивается и на каждой из цепей, как на матрице, строится комплементарная ей дочерняя цепь.
Перейти на страницу:
1 2 3