company logo


Технология выращивания искусственных органов на основе стволовых клеток

Схема работы принтера представлена на рисунке 4. Итак, сначала выращиваются требуемые ткани. Затем выращенная ткань нарезается цилиндрами в соотношении диаметра к длине 1:1 (пункт a).

биопринтер стволовой клетка орган

Далее - пункт b - эти цилиндрики на время помещаются в специальную питательную среду, где они приобретают форму маленьких шаров. Диаметр такого шара - 500 микрометров (пол миллиметра). Оранжевый цвет ткани придаётся с помощью специального красителя. Далее, шарики загружаются в картридж (пункт c) - который содержит пипетки, наполняемые шариками в порядке один за другим. Сам трёхмерный биопринтер (пункт d) должен наносить эти сфероиды с микрометровой точностью (то есть ошибка должна быть меньше тысячной доли миллиметра). Принтер также оборудуется камерами, которые способны наблюдать в реальном времени процесс печати.

Созданный образец принтера работает сразу с тремя «цветами» - два вида клеток (в последних опытах Форгача это были клетки сердечной мышцы и эпителиальные клетки) - а третий - это смесь, включающая в себя скрепляющий гель, содержащий коллаген, фактор роста и ряд других веществ. Эта смесь позволяет органу сохранять форму, прежде чем клетки срастутся между собой (пункт d).По словам Габора, принтер не воспроизводит структуру органа в точности. Однако этого и не требуется. Природная программа клеток сама корректирует структуру органа.

Схема собирания органа и срастания шаров в орган показана на рисунке 5.

В ходе экспериментов биопринтер из клеток эндотелия и клеток сердечной мышцы цыпленка напечатал «сердце» (рисунок 6). Через 70 часов шарики срослись в единую систему, а через 90 часов - «сердце» начало сокращаться. Причём клетки эндотелия сформировали структуры, подобные капиллярам. Также мышечные клетки, первоначально сокращавшиеся хаотично, с течением времени самостоятельно синхронизировались и стали сокращаться одновременно. Впрочем, к практическому использованию этот прототип сердца пока что не пригодно - даже если вместо куриных клеток использовать человеческие - технология биопечати должна быть улучшена ещё.

Гораздо лучше принтер справляется с созданием более простых органов - например, кусков человеческой кожи или кровеносных сосудов. При печати кровеносных сосудов коллагеновый клей наносится не только на края сосуда, но и в середину. А затем, когда клетки сростутся, клей с лёгкостью удаляется. Стенки сосуда состоят из трех слоёв клеток - эндотелий, гладкие мышцы и фибробласты. Но исследования показали, что в печати можно воспроизводить только один слой, состоящий из смеси этих клеток - клетки сами мигрируют и выстраиваются в три однородных слоя. Этот факт может облегчить процесс печати многих органов. Таким образом команда Форгача уже может создавать очень тонкие и ветвящиеся сосуды любой формы. Сейчас исследователи работают над наращиванием слоя мышц на сосудах, что сделает сосуды применимыми для имплантации. Особый интерес представляют сосуды толщиной менее 6 миллиметров - так как для больших существуют подходящие синтетические материалы.

Иллюстрация с другими экспериментами биопечати - на рисунке 7.

Пункт a - кольцо из двух видов биочернил. Они специально окрашены разными флуоресцирующими веществами. Ниже - это же кольцо через 60 часов. Клетки самостоятельно срастаются. Пункт b - развитие трубки, набранной из колец, показанных на картинке. Пункт c сверху - 12-слойная трубка, составленная из клеток гладких мышечных волокон пуповины; пункт c, внизу - разветвлённая трубка прообраз сосудов для трансплантации. Пункт d - построение сокращающейся сердечной ткани. Слева показана решётка (6 на 6) из сфероидов с клетками сердечной мышцы (без эндотелия), распечатанных на коллагеновой "биобумаге". Если в те же "чернила" добавляются клетки эндотелия (второй рисунок - красный цвет, кардиомиоциты же тут показаны зелёным), они заполняют сначала пространство между сфероидами, а через 70 часов (пункт d, справа) вся ткань становится единым целым. Внизу: график сокращения клеток полученной ткани. Как видно, амплитуда (отмерена по вертикали) сокращений составляет примерно 2 микрона, а период - около двух секунд (время отмечено по горизонтали) (фото и иллюстрации Forgacs et al). На рисунке 8 также приведены структура распечатанных тканей сердца (фотографии Forgacs etal).

Перейти на страницу:
1 2 3 4 5


Новое на сайте

Другие материалы


Copyright © 2013 - Все права защищены - www.timebiology.ru