company logo


«Разорванные гены». Созревание мРНК

Рис. 10. Образование комплекса I. Высвобождение интрона и лигированных экзонов.

После прохождения обеих стадий сплайсинга становится необходимо разобрать сплайсосому, освободить лигированные экзоны, а также вырезанный интрон (рис 10). мРНК высвобождает HRH1 белок. Разборкой сплайсосомы занимается белок mDEAH9. Дополнительный белковый фактор (Prp24p) нужен для воссоздания U4/U6 гетеродимера. Не все белки, входящие в состав сплайсосомы, покидают мРНК после сплайсинга. Некоторые остаются связанными с мРНК в ядре и участвуют в экспорте сплайсированной мРНК. Другие переносятся с мРНК в цитоплазму, где осуществляют “контроль качества” мРНК при ее трансляции.

На рисунке 11 схематично представлен весь цикл работы сплайсосомы.

Рис. 11. Цикл работы сплайсосомы.

Таким образом, сплайсинг протекает в несколько этапов: начинается с взаимодействия пре-мРНК с U1 мяРНК, затем образуются лассо и сложная многокомпонентная структура. Пространственная структура взаимодействующих участков молекул РНК обеспечивает каталитические реакции разрыва одних межнуклеотидных связей и возникновение новых. В основе катализа лежит способность РНК образовывать описанные структуры, обеспечивающие высокую реакционную способность определенных нуклеотидов, расположенных по длине молекул РНК. Возникновение таких структур обеспечивает точность сплайсинга. В ряде случаев, например в транскриптах генов клеточных органелл (митохондрий или хлоропластов), образование сложной трехмерной структуры в районе интрона обеспечивает его вырезание и сшивание экзонов без участия белков. Такой процесс, не зависящий от белков, называют самосплайсингом или аутосплайсингом.

Обнаружение способности молекул РНК катализировать собственные химические превращения или модификацию (созревание) других молекул РНК позволило назвать их рибозимами по аналогии с ферментами (энзимами). Необходимо отметить, что активность рибозимов сильно увеличивается, когда они находятся в комплексе с белками. В обоих случаях успешный ход катализа обеспечивается трехмерными структурами белка или РНК-РНК-комплекса. Повреждение этих структур останавливает реакцию. В случае рибозимов первостепенную роль играют комплементарные взаимодействия нуклеотидных пар. Заметим, однако, что белки ускоряют взаимодействия мяРНК с пре-мРНК.

В сплайсинге принимают участие белки, обладающие ферментативной активностью. Для сборки комплекса, катализирующего сплайсинг, необходимо потребление энергии в виде расщепляемых молекул АТФ, поэтому в его составе обнаруживаются белки, обладающие аденозинтрифосфатазной активностью. Кроме того, здесь функционируют и РНК-хеликазы - ферменты, способные расплетать при потреблении АТФ двойные спирали РНК-РНК. Эти ферменты подобны ДНК-хеликазам, расплетающим двунитевую спираль ДНК при репликации молекулы ДНК. Хеликазы обеспечивают ход сплайсинга. Они вовремя разрушают одни РНК-РНК взаимодействия (например, U4 мяРНК - U6 мяРНК ), способствуя тем самым возникновению новых нековалентных связей между молекулами РНК. Таким образом, последовательность событий, ведущих к сплайсингу экзонов, достаточно жестко определена, причем каждая последующая стадия (или реакция) обусловлена предыдущей. Многокомпонентность машины сплайсинга позволяет ускорять или тормозить процесс созревания РНК, если изменять концентрацию отдельных компонентов или вызывать их химическую модификацию. Например, наблюдали фосфорилирование белков сплайсинга, сопровождающееся активацией одних и инактивацией других белков.

Перейти на страницу:
1 2 3 


Новое на сайте

Другие материалы


Copyright © 2013 - Все права защищены - www.timebiology.ru